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a b s t r a c t

A fourth-order compact difference discretization scheme with unequal meshsizes in differ-
ent coordinate directions is employed to solve a three-dimensional (3D) Poisson equation
on a cubic domain. Two multgrid methods are developed to solve the resulting sparse lin-
ear systems. One is to use the full-coarsening multigrid method with plane Gauss–Seidel
relaxation, which uses line Gauss–Seidel relaxation to compute each planewise solution.
The other is to construct a partial semi-coarsening multigrid method with the traditional
point or plane Gauss–Seidel relaxations. Numerical experiments are conducted to test
the computed accuracy of the fourth-order compact difference scheme and the computa-
tional efficiency of the multigrid methods with the fourth-order compact difference
scheme.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We consider the 3D Poisson equation with Dirichlet boundary conditions
uxx þ uyy þ uzz ¼ f ðx; y; zÞ; ðx; y; zÞ 2 X; ð1Þ
uðx; y; zÞ ¼ gðx; y; zÞ; ðx; y; zÞ 2 @X: ð2Þ
where X is a bounded convex domain and oX is the boundary of X. The solution u(x,y,z) and the forcing function f(x,y,z) are
assumed to be sufficiently smooth and to have the required continuous partial derivatives.

In the past two decades, a great deal of research work has been published on the development of numerical solution of
Poisson equations [1–12]. On one hand, high-order compact (HOC) finite difference methods have been proposed for solving
2D and 3D Poisson equations [1–7]. On the other hand, recently there has been a renewed interest in combing HOC scheme
with multigrid method to solve elliptic differential equations [8–17]. The efficiency and performance of this procedure have
been verified in the literature. Gupta et al. [8] combined HOC difference approximation with multigrid V-cycle algorithm to
solve the 2D Poisson equation, which has showed the dramatic improvement in the computed accuracy and the computa-
tional efficiency compared with the five-point second-order central difference scheme. Othman and Abdullah [9] presented
an efficient technique which is named quarter sweeps multigrid method for solving 2D Poisson equation and in the tech-
nique the red–black Guass–Seidel smoothing scheme is shown to be the most superior. Zhang [10] employed a fourth-order
compact finite difference scheme with multigrid algorithm to solve the 3D Poisson equation and compared the influence of
different ordering of grid space and different grid transfer operators on the convergence and efficiency of high-order algo-
rithm. Kouatchou and Zhang [11] proposed an optimal scaled injection operator for the multigrid algorithm for solving
. All rights reserved.
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the 3D Poisson equation with a fourth-order 19-point compact finite difference scheme. The goal of them is to seek high
accuracy within the constraints imposed by limitations in computer time and storage.

It is noticed that performance of HOC schemes and some combined with multigrid method for solving elliptic differential
equations using equal meshsize descritization in different directions have been extensively described in the literature [1–
5,7–11,13–16]. However, in certain situations the physical quantity modeled may have uneven distribution in different
directions, in which the use of unequal meshsizes in different coordinate directions is more cost-effective [6,12,17]. In
[12], a fourth-order compact discretization scheme with unequal meshsizes and specialized multigrid methods using a par-
tial semi-coarsening strategy and line Gauss–Seidel relaxation were designed to solve the 2D Poisson equation. The two spe-
cial multigrid methods based on the fourth-order compact unequal-meshsize-discretization scheme were found to be very
efficient for solving the 2D Poisson equation. However, the author pointed out in the concluding remarks that ‘‘the analogous
generalizations of specialized multigrid methods to 3D are not straightforward; at least their implementations are nontriv-
ial”. In this paper, we will solve this problem and generalize two specialized muligrid methods for solving 2D Poisson equa-
tion in [12] to 3D case.

The organization of this paper is as follows. Section 2 introduces a fourth-order compact finite difference discretization
scheme with unequal meshsizes in different coordinate directions for the 3D Poisson Eq. (1); In Section 3, a brief introduction
to the general philosophy of the multigrid method is given and a plane relaxation full-coarsening multigrid method and a
partial semi-coarsening multigrid method are designed; In Section 4, numerical experiments are conducted to show the effi-
ciency and the effectiveness of the present method; Finally, Section 5 is the concluding remarks.

2. Fourth-order compact difference scheme

For convenience, we consider a cubic domain X = [0,Lx] � [0,Ly] � [0,Lz]. We discretize (1) with unequal meshsizes hx, hy

and hz in the x, y and z coordinate directions, respectively, and Nx = Lx/hx, Ny = Ly/hy and Nz = Lz/hz are the numbers of uniform
intervals along the x, y and z directions. The grid points are (xi,yj,zk), with xi = ihx, yj = jhy and zk = khz, i = 0,1, . . . ,Nx,
j = 0,1, . . . ,Ny and k = 0,1, . . . ,Nz.

If we use the central difference approximation to all the second partial derivative of u at the grid point (i, j,k) correspond-
ing to (xi,yj,zk), we can derive the familiar seven-point central difference scheme for (1)
d2
x ui;j;k þ d2

yui;j;k þ d2
z ui;j;k ¼ fi;j;k þ si;j;k; ð3Þ
in which
d2
x ui;j;k ¼

uiþ1;j;k � 2ui;j;k þ ui�1;j;k

h2
x

; ð4Þ

d2
y ui;j;k ¼

ui;jþ1;k � 2ui;j;k þ ui;j�1;k

h2
y

; ð5Þ

d2
z ui;j;k ¼

ui;j;kþ1 � 2ui;j;k þ ui;j;k�1

h2
z

; ð6Þ
and si,j,k is the truncation error term. Using Taylor series analysis, we can get
si;j;k ¼
1

12
h2

x uxxxx þ h2
y uyyyy þ h2

z uzzzz

� �
þ Oðh4

x þ h4
y þ h4

z Þ: ð7Þ
Obviously, (3) is second-order accuracy; i.e., its truncation is Oðh2
x þ h2

y þ h2
z Þ. However, if uxxxx, uyyyy and uzzzz in the leading

term of si,j,k in (7) can be approximated to order Oðh2
x þ h2

y þ h2
z Þ compactly, then this approximation combined with the se-

ven-point central difference can be led to a fourth-order compact scheme; i.e., its truncation is Oðh4
x þ h4

y þ h4
z Þ.

To achieve this goal, we first take the appropriate derivatives of (1) to write
uxxxx ¼ fxx � uxxyy � uxxzz; ð8Þ
uyyyy ¼ fyy � uxxyy � uyyzz; ð9Þ
uzzzz ¼ fzz � uxxzz � uyyzz: ð10Þ
It is obvious that each of the expressions on the right hand in (8)–(10) has compact central difference approximations of or-
der Oðh2

x þ h2
y þ h2

z Þ. Substituting (8)–(10) into (7), then (7) turns to
si;j;k ¼
1

12
h2

x fxx þ h2
y fyy þ h2

z fzz

� �
i;j;k
� 1

12
h2

x ðuxxyy þ uxxzzÞ þ h2
yðuxxyy þ uyyzzÞ þ h2

z ðuxxzz þ uyyzzÞ
h i

i;j;k

þ O h4
x þ h4

y þ h4
z

� �
: ð11Þ
Simply substituting central difference expressions in (11) and including these in the central difference scheme (3), we get
ðd2
x þ d2

y þ d2
z Þui;j;k þ

1
12
½h2

x ðd
2
xd

2
y þ d2

xd
2
z Þ þ h2

yðd
2
xd

2
y þ d2

yd
2
z Þ þ h2

z ðd
2
xd

2
z þ d2

yd
2
z Þ�ui;j;k

¼ fi;j;k þ
1

12
ðh2

xd
2
x þ h2

yd
2
y þ h2

z d
2
z Þfi;j;k þ Oðh4

x þ h4
y þ h4

z Þ: ð12Þ
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Substituting (4)–(6) in both sides of (12), after some rearrangement and dropping the high-order term Oðh4
x þ h4

y þ h4
z Þ, we

can get an unequal-meshsize-discretization fourth-order compact difference scheme for 3D Poisson equation, written out
explicitly
� 8
1

h2
x

þ 1

h2
y

þ 1

h2
z

 !
ui;j;k þ

4

h2
x

� 1

h2
y

� 1

h2
z

 !
ðuiþ1;j;k þ ui�1;j;kÞ þ

4

h2
y

� 1

h2
x

� 1

h2
z

 !
ðui;jþ1;k þ ui;j�1;kÞ

þ 4

h2
z

� 1

h2
x

� 1

h2
y

 !
ðui;j;kþ1 þ ui;j;k�1Þ þ

1
2

1

h2
x

þ 1

h2
y

 !
ðuiþ1;jþ1;k þ uiþ1;j�1;k þ ui�1;jþ1;k þ ui�1;j�1;kÞ

þ 1
2

1

h2
x

þ 1

h2
z

 !
ðuiþ1;j;kþ1 þ uiþ1;j;k�1 þ ui�1;j;kþ1 þ ui�1;j;k�1Þ þ

1
2

1

h2
y

þ 1

h2
z

 !
ðui;jþ1;kþ1 þ ui;jþ1;k�1 þ ui;j�1;kþ1 þ ui;j�1;k�1Þ

¼ 1
2
ð6f i;j;k þ fiþ1;j;k þ fi;jþ1;k þ fi�1;j;k þ fi;j�1;k þ fi;j;kþ1 þ fi;j;k�1Þ: ð13Þ
This scheme was originally derived by Wang et al. [6] by using a different way. If letting h = hx = hy = hz and multiplying h2 on
the both sides of (13), we can get the fourth-order compact difference scheme approximation of the 3D Poisson equation
with equal meshsize disretization, which is the same as that proposed by Kwon and Stephenson [1]
�24ui;j;k þ 2ðuiþ1;j;k þ ui�1;j;k þ ui;jþ1;k þ ui;j�1;k þ ui;j;kþ1 þ ui;j;k�1Þ þ uiþ1;jþ1;k þ uiþ1;j�1;k þ ui�1;jþ1;k þ ui�1;j�1;k

þ uiþ1;j;kþ1 þ uiþ1;j;k�1 þ ui�1;j;kþ1 þ ui�1;j;k�1 þ ui;jþ1;kþ1 þ ui;jþ1;k�1 þ ui;j�1;kþ1 þ ui;j�1;k�1

¼ h2

2
ð6f i;j;k þ fiþ1;j;k þ fi;jþ1;k þ fi�1;j;k þ fi;j�1;k þ fi;j;kþ1 þ fi;j;k�1Þ: ð14Þ
3. Specialized multigrid method

Multigrid method has been known for many years and it is among the fastest and the most efficient iterative methods for
solving a wide class of partial differential equations. This method offers convergence rate independent of the grid size and is
very effective for solving large scale sparse linear systems which are derived by discretizing elliptic problems. The essential
principle of mutigrid method is to approximate the smooth (long wavelength) part of the error on coarser grids. The non-
smooth or rough part is reduced with a small number (independent of meshsize h) of iterations with a basic iterative method
on the fine grid. For solving 2D and 3D Poisson equations discretized by the standard second-order central difference scheme
and the fourth-order compact difference schemes (with equal meshsize), efficient multigrid methods are implemented in
[8,10]. The multigrid methods employed standard grid coarsening strategy (the coarse grid meshsizes double that of the fine
gird. See [8,10]). However, for a Poisson equation discretized with unequal meshsizes, i.e., for solving an anisotropic problem,
a standard multigrid method does not work very well [12]. So, in [12], two specialized multigrid methods are proposed to
solve 2D Poisson equation discretized with unequal meshsizes. The first is to use line Gauss–Seidel relaxation to replace
point Gauss–Seidel relaxation because line Gauss–Seidel relaxation is shown to be very effective in removing high-frequency
errors in the dominant direction with large coefficients. The second is to use partial semi-coarsening strategy; i.e., grid coars-
ening is only performed along the dominant direction while the meshsize along the other direction is not coarsened. Numer-
ical results show that the specialized multigrid methods are more efficient than the traditional full-coarsening multigrid
method and the fourth-order compact difference scheme with the multigrid methods is more cost-effective than the sec-
ond-order central difference scheme with the multigrid methods.

For the particularity of 3D anisotropic problems, the implementations of the multigrid methods are more complicated
than for 2D cases; i.e., the dominant direction is not always one direction, the x direction, the y direction or the z direction,
but two directions, the x and y directions, the y and z directions, or the x and z directions, and one is the dominant direction
and the other is the sub-dominant direction. So either a single-line relaxation or a semi-coarsening along one direction will
not suffice for 3D case. For 3D problems, plane relaxation can be used to remove high-frequency error and each planewise
solution still can be obtained by using line relaxation. It is easy to be conducted by performing one line Gauss–Seidel relax-
ation along the dominant direction followed by sweeping along the sub-dominant direction. If problems just show anisot-
ropy in one direction, we just perform one line Gauss–Seidel relaxation along the dominant direction followed by sweeping
along either of the two non-dominant directions. Numerical experiment results show that it is as effective as the line Gauss–
Seidel relaxation for 2D problems. However, partial semi-coarsening is complicated since there are two directions in which
the meshsizes may change. Under this condition, standard multigrid restriction and prolongation operators do not work
well. So, new restriction and prolongation operators must be constructed. But we think this difficulty can be overcome.
So, in this paper, we shall mostly put our attention on partial semi-coarsening multigrid strategy for 3D.

3.1. Partial semi-coarsening strategy

For convenience, we suppose that the domain X is a regular cube; i.e., X = [0,L] � [0,L] � [0,L], and the dominant direc-
tions are always in one direction or two directions, never in all three directions. To simplify our discussion without loss of



Fig. 1. Process of the grid partial semi-coarsening.
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generality, we assume that the x direction is the dominant direction and the y direction is the sub-dominant direction, and
the z direction is not the dominant direction. It means that the physical quantity has uneven distribution in different direc-
tions, which changes fastest in the x direction, faster in the y direction and slowest in the z direction, comparatively. To cap-
ture accurate solution of the problems, we need distribute most grids in the x direction, more grids in the y direction, and
least grids in the z direction, comparatively. Consequently, we suppose that hx 6 hy 6 hz. For efficient implementation of the
multigrid method, we further suppose that Nx ¼ 2nx ;Ny ¼ 2ny and Nz ¼ 2nz , and positive integers nx, ny and nz are possibly grid
level numbers in the x, y and z directions. By our assumptions above, it is easy to see that nx P ny P nz.

In the implementation of partial semi-coarsening strategy the grid coarsening is only performed along the dominant
direction(s). So, we start coarsening from the first plane in the x direction. Every other grid plane is alternately reduced,
therefore we get the coarsen grid from fine grid. Because on each grid level the meshsize hx is different, we have different
difference equations. But with the process of grid coarsening, inevitably, there will be a coarse grid level on which Nx = Ny.
On this coarse grid, the x and y directions are simultaneously becoming dominant. In order to get the successive coarse grid
from this level, it needs to reduce grid planes from the first plane to every other plane along both the x and y directions. The
difference equations are still different on each coarse grid level until to a level which satisfies Nx = Ny = Nz. On this coarse grid,
the discrete equation is actually the standard Poisson equation with equal meshsize. Starting from this grid level, the follow-
ing coarsening strategy will be standard full coarsening; i.e., every other grid plane in all directions is eliminated. Using the
same name as in [12], we still call this specialized coarsening process partial semi-coarsening strategy for 3D case. As in stan-
dard multigrid method, the coarsest grid will have only one unknown. For example, if we simplify to write Nx = 128, Ny = 32,
Nz = 8 as 128 � 32 � 8, Fig. 1 gives the process of the grid partial semi-coarsening.
3.2. Restriction and prolongation operators

Since the grid number on the x, y and z directions may not the same under the discretization with unequal meshsizes,
standard multigrid restriction and prolongation operators can not be used in the process of partial semi-coarsening. So,
we need to construct specified restriction and prolongation operators. For residual restriction operator, it is designed as
follows:

(i) If Nx > Ny > Nz, the grid coarsening is only performed along the x direction. So, we just use a one-direction weighting
average operator. The residual at the coarse grid points is computed by averaging the residual at the corresponding
fine grid points and its two neighboring grid points in the x direction. Letting ri,j,k be the residual at fine grid point
(i, j,k) and �r�i;j;k the corresponding residual at coarse grid ð�i; j; kÞ, it is easy to know i ¼ 2i and we use
�r�i;j;k ¼
1
4
ðri�1;j;k þ 2ri;j;k þ riþ1;j;kÞ:
(ii) If Nx = Ny > Nz, the grid coarsening is performed along both the x and y directions. We use a two-direction weighting
average operator. The residual at the coarse grid points is computed by averaging the residual at the corresponding
fine grid points and its eight neighboring grid points in both the x and y directions. Letting �r�i;�j;k be the corresponding
residual at coarse grid ð�i;�j; kÞ, under this condition i ¼ 2i; j ¼ 2j, we use
�r�i;�j;k ¼
1

16
½4ri;j;k þ 2ðriþ1;j;k þ ri�1;j;k þ ri;jþ1;k þ ri;j�1;kÞ þ riþ1;jþ1;k þ riþ1;j�1;k þ ri�1;jþ1;k þ ri�1;j�1;k�:
(iii) If Nx = Ny = Nz, the grid is reduced to have equal meshsize in three directions and the grid coarsening is performed
along all three directions. Letting �r�i;�j;�k be the corresponding residual at coarse grid ð�i;�j; �kÞ, we have
i ¼ 2i; j ¼ 2j; k ¼ 2k and we use the full-weighting operator [10,18]
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�r�i;�j;�k ¼
1

64
½8ri;j;k þ 4ðri�1;j;k þ riþ1;j;k þ ri;j�1;k þ ri;jþ1;k þ ri;j;k�1 þ ri;j;kþ1Þ þ 2ðriþ1;jþ1;k þ ri�1;jþ1;k þ riþ1;j�1;k þ ri�1;j�1;k

þ ri;jþ1;k�1 þ ri;jþ1;kþ1 þ ri;j�1;k�1 þ ri;j�1;kþ1 þ riþ1;j;kþ1 þ riþ1;j;k�1 þ ri�1;j;k�1 þ ri�1;j;kþ1Þ þ riþ1;jþ1;k�1 þ ri�1;jþ1;k�1

þ riþ1;j�1;k�1 þ ri�1;j�1;k�1 þ riþ1;jþ1;kþ1 þ ri�1;jþ1;kþ1 þ riþ1;j�1;kþ1 þ ri�1;j�1;kþ1�:
For prolongation operator, we use a similar strategy.

(i) If Nx > Ny > Nz, corrections for the approximate solution at fine grid points corresponding to the coarse grid points are
transferred directly. Corrections for other fine grid points take the average of the neighboring two grid points in the x
direction only
ri;j;k ¼ �r�i;j;k;

ri�1;j;k ¼
1
2
ð�r�i�1;j;k þ �r�i;j;kÞ:
(ii) If Nx = Ny > Nz, corrections for the approximate solution at fine grid points corresponding to the coarse grid points
are transferred directly. Corrections for other fine grid points are interpolated in the x and y directions
simultaneously
ri;j;k ¼ �r�i;j;k;

ri�1;j;k ¼
1
2
ð�r�i�1;j;k þ �r�i;j;kÞ;

ri;j�1;k ¼
1
2
ð�ri;�j�1;k þ �ri;�j;kÞ;

ri�1;j�1;k ¼
1
4
ð�r�i�1;�j;k þ �r�i;�j;k þ �r�i�1;�j�1;k þ �r�i;�j�1;kÞ:
(iii) If Nx = Ny = Nz, we use the standard tri-linear interpolation operators [10,18]
ri;j;k ¼ �r�i;j;k;

ri�1;j;k ¼
1
2
ð�r�i�1;j;k þ �r�i;j;kÞ;

ri;j�1;k ¼
1
2
ð�ri;�j�1;k þ �ri;�j;kÞ;

ri;j;k�1 ¼
1
2
ð�ri;j;�k�1 þ �ri;j;�kÞ;

ri�1;j�1;k ¼
1
4
ð�r�i�1;�j;k þ �r�i;�j;k þ �r�i�1;�j�1;k þ �r�i;�j�1;kÞ;

ri�1;j;k�1 ¼
1
4
ð�r�i�1;j;�k þ �r�i;j;�k þ �r�i�1;j;�k�1 þ �r�i;j;�k�1Þ;

ri;j�1;k�1 ¼
1
4
ð�ri;�j;�k�1 þ �ri;�j;�k þ �ri;�j�1;�k�1 þ �ri;�j�1;�kÞ;
ri�1;j�1;k�1 ¼
1
8
ð�r�i�1;�j;�k þ �r�i�1;�j;�k�1 þ �r�i;�j;�k þ �r�i;�j;�k�1 þ �r�i;�j�1;�k þ �r�i;�j�1;�k�1 þ �r�i�1;�j�1;�k þ �r�i�1;�j�1;�k�1Þ:
3.3. Relaxation operators

For relaxation operators (smoothers), we use the point Gauss–Seidel relaxation in lexicographical ordering (point GS), in
red–black ordering (red–black GS), in four-coloring (four-color GS) and plane Gauss–Seidel (plane GS) relaxation. Since we
have supposed that the x direction is dominant direction and y sub-dominant direction, we use xoy plane relaxation which
performs one x direction line Gauss–Seidel relaxation followed by sweeping along the y direction. We point out that four-
coloring with the fourth-order compact difference scheme can decouple the grid points completely (see [15]), so there is
inherent parallelism from this implementation. And the red–black Gauss–Seidel relaxation with the fourth-order compact
difference scheme, in [10] for 3D Poisson equation, is shown to have a better smoothing effect than the lexicographical
Gauss–Seidel relaxation although red–black ordering with the fourth-order compact scheme does not decouple the grid
points completely. In the next section, we will study smoothing effect of different relaxation operators by numerical
experiments.
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4. Numerical experiments

To test the accuracy and efficiency of the fourth-order compact difference scheme and the multigrid methods for solving
3D Poisson Eq. (1), we choose an experimental problem which has exact solution u(x,y,z) = sin(10px) sin(3py) sin(pz) on the
unit cubic domain [0,1] � [0,1] � [0,1]. This function is designed so that it changes most rapidly in the x direction, more rap-
idly in the y direction, and slowly in the z direction. Consequently, we use 3D grids with Nx P Ny P Nz. If the solution changes
more rapidly in the y and z directions or x and z directions, etc., we just need modify the multigrid methods for the changed
dominant directions and the present multigrid methods should be equally effective.

Both the fourth-order compact difference scheme and the standard second-order central difference scheme are employed
with the multigrid methods to solve this problem and the computed results in terms of solution accuracy, multigrid conver-
gence rate, and computational cost (CPU time) between two schemes are compared. The multigrid methods use V (1,1) cycle
algorithm; i.e., it performs one relaxation on each grid level before restricting the residual to the coarse grid space (pre-
smoothing) and performs one relaxation after interpolating the solution back to the fine grid space (post-smoothing). The
iterative procedure is started with zero initial data and is terminated when the Euclidean norm (2-norm) of the residual vec-
tor is reduced by 10�10. The code is written in Fortran 77 programming language with double precision arithmetic and all
computations are run on a private computer with an Intel 2.4 GHz CPU and 2 GB memory.

4.1. Comparison of second- and fourth-order difference schemes

The fourth-order compact difference scheme is first compared with the second-order central difference scheme using the
partial semi-coarsening multigrid method with the four-coloring Gauss–Seidel relaxation. The number of multigrid V(1,1)
cycle iterations (I), the corresponding CPU time (T) in seconds as well as the maximum absolute errors (Error) between
the computed solution and the exact solution over the entire fine grid points are given in Table 1. It shows that the partial
semi-coarsening multigrid method with the fourth-order compact difference scheme has apparently fast convergence rate
against the second-order central difference scheme. And the solution computed from the fourth-order compact difference
scheme is much more accurate than that computed from the second-order central difference scheme. Thus, the fourth-order
compact difference scheme is more cost-effective than the second-order central difference scheme for computing an approx-
imate solution with a given accuracy; e.g., the maximum absolute error computed from the fourth-order compact scheme
with Nx = 32, Ny = 16 and Nz = 8 is 3.581 � 10�4 and cost CPU time 0.063 s which is more accurate than the result
4.613 � 10�3 from the second-order central scheme with Nx = Ny = Nz = 128 and the CPU cost is 30.422 s. The results in Table
Table 1
The number of iterations (I), CPU times (T) and maximum absolute errors (Error) of multigrid method with four-coloring Guass–Seidel relaxation for the fourth-
order compact difference scheme and the second-order central difference scheme.

Nx Ny Nz Second-order central scheme Fourth-order compact scheme

I T Error I T Error

128 128 128 17 30.422 4.613(�3) 12 58.750 1.131(�5)
128 128 64 17 10.750 4.614(�3) 11 30.531 1.061(�5)
128 128 32 16 7.921 4.620(�3) 11 15.359 7.806(�6)
128 128 16 14 3.344 4.642(�3) 10 6.501 3.357(�6)
128 128 8 12 1.344 4.730(�3) 9 2.703 4.737(�5)
128 64 64 16 10.750 4.726(�3) 11 18.641 3.987(�6)
128 64 32 15 4.813 4.732(�3) 10 8.704 1.104(�6)
128 64 16 13 1.985 4.754(�3) 9 3.579 1.039(�5)
128 64 8 11 0.781 4.842(�3) 9 1.610 5.572(�5)
128 32 32 14 2.407 5.178(�3) 10 4.328 2.389(�5)
128 32 16 12 0.984 5.200(�3) 9 1.897 3.670(�5)
128 32 8 10 0.375 5.288(�3) 10 0.922 8.731(�5)
128 16 16 10 0.407 6.970(�3) 9 0.875 1.125(�4)
128 16 8 8 0.156 7.059(�3) 9 0.391 1.843(�4)

64 64 64 17 3.579 1.860(�2) 11 5.953 1.825(�4)
64 64 32 15 1.734 1.860(�2) 11 3.297 1.713(�4)
64 64 16 14 0.797 1.863(�2) 10 1.453 1.263(�4)
64 64 8 12 0.312 1.872(�2) 8 0.547 5.280(�5)
64 32 32 14 1.000 1.906(�2) 10 1.859 6.522(�5)
64 32 16 13 0.453 1.908(�2) 9 0.812 1.857(�5)
64 32 8 11 0.187 1.918(�2) 8 0.313 1.674(�4)
64 16 16 11 0.204 2.090(�2) 9 0.390 3.828(�4)
64 16 8 8 0.062 2.099(�2) 8 0.156 5.964(�4)
32 32 32 15 0.391 7.678(�2) 10 0.672 3.024(�3)
32 32 16 13 0.188 7.681(�2) 9 0.312 2.842(�3)
32 32 8 11 0.078 7.691(�2) 8 0.125 2.114(�3)
32 16 16 11 0.094 7.884(�2) 8 0.156 1.139(�3)
32 16 8 9 0.031 7.894(�2) 8 0.063 3.581(�4)
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1 also show that the fourth-order compact scheme demonstrates fourth-order convergence while the second-order central
scheme just demonstrates second-order convergence; e.g., the error 1.857 � 10�5 with Nx = 64, Ny = 32 and Nz = 16 is around
one 16 of that with Nx = 32, Ny = 16 and Nz = 8, which is 3.581 � 10�4 for the fourth-order compact scheme while the error
1.908 � 10�2 with Nx = 64, Ny = 32 and Nz = 16 is just one fourth of that with Nx = 32, Ny = 16 and Nz = 8, which is 7.894 � 10�2

for the second-order central scheme. Similar comparison can be made with other data to get same conclusions. On the other
hand, we also can see that for the anisotropic problem defined as above, increasing Ny and Nz does not always lead to rea-
sonable increase in accuracy in the computed solution; e.g., for the fourth-order compact difference scheme, the least error
1.104 � 10�6 is achieved with Nx = 128, Ny = 64 and Nz = 32 in 8.704 s. Using equal grid Nx = Ny = Nz = 128 does not produce
more accurate solutions (the same phenomenon also occurs in 2D case, see Ref. [12]). The cost, however, is increased to
58.750 s. This also tells us that it is necessary to use unequal meshsize discretization to solve an anisotropic problem.
4.2. Comparison of different multigrid methods

For 2D Poisson equation, Ref. [12] compares the convergence histories of the full-coarsening multigrid method with the
four-coloring Gauss–Seidel relaxation, the partial semi-coarsening multigrid method with the four-coloring Gauss–Seidel
relaxation, and the full-coarsening multigrid method with the line Gauss–Seidel relaxation to find that the later two methods
converge fast while the standard full-coarsening multigrid with the four-coloring Gauss–Seidel relaxation takes more iter-
ations to converge. For 3D Poisson equation, we still compare the three multigrid methods in Figs. 2 and 3. It needs pointing
out that the line Gauss–Seidel relaxation in 2D is replaced by the xoy plane Gauss–Seidel relaxation in 3D. In Fig. 2, we first
choose Nx = 128, Ny = 64 and Nz = 32 so that the anisotropy is moderate. Then, we increase the anisotropy by choosing
Nx = 128, Ny = 32 and Nz = 16, Nx = 128, Ny = 16 and Nz = 8. In Fig. 3, we first choose Nx = 64, Ny = 32 and Nz = 16, then
Nx = 64, Ny = 32 and Nz = 8, finally Nx = 64, Ny = 16 and Nz = 8. We can see that both the partial semi-coarsening and the plane
Gauss–Seidel relaxation multigrid methods still work very well and their convergence rates are nearly not affected by the
change of meshsizes in the y and z directions. For all computed cases, it just needs no more than 10 iterations of the partial
semi-coarsening multigrid method and 15 iterations of the plane relaxation multigrid method. In particular, in a few cases,
when anisotropy is strong (Figs. 2(c) and 3(c)), the full-coarsening multigrid method with the xoy plane relaxation is the
most efficient. However, the full-coarsening multigrid method with the four-coloring Gauss–Seidel relaxation does not work
well for 3D case. It needs more than 40 iterations of the full-coarsening multigrid method to converge and the iteration num-
ber increases with the increase of the anisotropy. For Nx = 128, Ny = 16 and Nz = 8, the anisotropy is the strongest, the iter-
ation number of the full -coarsening multigrid method with the four-coloring Gauss–Seidel relaxation is more than 100.
These comparison shows that both multigrid methods with the plane Gauss–Seidel relaxation and partial semi-coarsening
are efficient solvers for solving 3D anisotropic problems.
4.3. Comparison of different multigrid relaxation operators

For the fourth-order compact difference scheme, we compare multigrid methods with different Gauss–Seidel relaxation
operators. In Table 2, the multigrid methods with the point Gauss–Seidel relaxation, the red–black Gauss–Seidel relaxation,
the four-coloring Gauss–Seidel relaxation and the xoy plane Gauss–Seidel relaxation are compared in terms of the number of
iterations and CPU time in seconds. All relaxations are implemented with semi-coarsening if Nx – Ny or Ny – Nz. We can see
that when the anisotropy is moderate, the four-coloring Gauss–Seidel relaxation and the red–black Gauss–Seidel relaxation
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Fig. 2(a). Comparison of convergence rates of the partial semi-coarsening multigrid method with four-color GS relaxation, the full-coarsening multigrid
method with xoy plane GS relaxation and the full-coarsening multigrid method with four-color GS relaxation. On the finest grid, Nx = 128, Ny = 64, Nz = 32.
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Fig. 2(b). Comparison of convergence rates of the partial semi-coarsening multigrid method with four-color GS relaxation, the full-coarsening multigrid
method with xoy plane GS relaxation and the full-coarsening multigrid method with four-color GS relaxation. On the finest grid, Nx = 128, Ny = 32, Nz = 16.
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Fig. 2(c). Comparison of convergence rates of the partial semi-coarsening multigrid method with four-color GS relaxation, the full-coarsening multigrid
method with xoy plane GS relaxation and the full-coarsening multigrid method with four-color GS relaxation. On the finest grid, Nx = 128, Ny = 16, Nz = 8.
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Fig. 3(a). Comparison of convergence rates of the partial semi-coarsening multigrid method with four-color GS relaxation, the full-coarsening multigrid
method with xoy plane GS relaxation and the full-coarsening multigrid method with four-color GS relaxation. On the finest grid, Nx = 64, Ny = 32, Nz = 16.
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Fig. 3(c). Comparison of convergence rates of the partial semi-coarsening multigrid method with four-color GS relaxation, the full-coarsening multigrid
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are more robust than the point Gauss–Seidel relaxation and the xoy plane Gauss–Seidel relaxation. When anisotropy is
strong, the xoy plane Gauss–Seidel relaxation shows the most superior. In a few cases, the xoy plane Gauss–Seidel relaxation
achieves the fewest number of iterations among the four relaxation operators. However, as far as the CPU time is concerned,
the four-coloring Gauss–Seidel relaxation, due to its inherent parallelism, takes the least CPU time and thus is the most cost-
effective.
5. Concluding remarks

In this paper, a fourth-order compact difference discretization scheme with unequal meshsizes in different coordinate
directions is employed to solve 3D Poisson equation. Then, the line Gauss–Seidel relaxation and the partial semi-coarsening
multigrid methods proposed in [12] for solving 2D Poisson equation are generalized to solve 3D problems. Although Ref. [12]
declares that the generalizations are not straightforward and their implementations are nontrivial, we fulfill it! It needs
pointing out that the full-coarsening multigrid method with the plane relaxation, which uses the line Gauss–Seidel relaxa-
tion to compute each planewise solution, still works well as the line Gauss–Seidel relaxation does for solving 2D Poisson
equation. In particular, in the partial semi-coarsening multigrid method, the four-coloring and red–black Gauss–Seidel relax-
ation are shown to be more robust when the anisotropy is moderate and the plane Gauss–Seidel relaxation is the most effi-
cient when anisotropy is strong. As far as the computational cost is concerned, the four-coloring Gauss–Seidel relaxation
takes the least CPU time and is the most cost-effective.

As we know, some fourth-order compact difference schemes have been developed to solve 2D incompressible Navier–
Stokes equations [19–22], 3D convection diffusions [15,16,23] and the general 3D linear elliptic partial differential equations



Table 2
Comparison of the number of iterations (I) and CPU time (T) for different multigrid smoothers with the fourth-order compact difference scheme.

Nx Ny Nz Point GS Red–black GS Four-color GS Plane GS

I T I T I T I T

128 128 128 13 59.859 12 59.079 12 58.750 13 63.141
128 128 64 13 34.281 12 33.250 11 30.531 12 33.594
128 128 32 12 16.063 11 15.500 11 15.359 13 18.140
128 128 16 12 7.422 10 6.641 10 6.501 13 8.421
128 128 8 11 3.141 9 2.750 9 2.703 13 3.875
128 64 64 14 23.297 11 18.781 11 18.641 11 19.625
128 64 32 15 12.656 10 8.782 10 8.704 10 9.157
128 64 16 15 5.750 9 3.609 9 3.579 10 4.156
128 64 8 14 2.422 9 1.625 9 1.610 9 1.719
128 32 32 16 7.016 11 4.938 10 4.328 9 4.484
128 32 16 16 3.234 11 2.281 9 1.897 8 1.921
128 32 8 15 1.343 10 0.938 10 0.922 8 0.970
128 16 16 17 1.657 10 1.106 9 0.875 8 0.906
128 16 8 15 0.656 9 0.406 9 0.391 8 0.395

64 64 64 13 6.984 11 6.031 11 5.953 13 7.359
64 64 32 12 3.609 11 3.329 11 3.297 12 3.797
64 64 16 12 1.735 10 1.468 10 1.453 12 1.813
64 64 8 11 0.734 9 0.609 8 0.547 12 0.843
64 32 32 13 2.391 10 1.875 10 1.859 10 1.984
64 32 16 14 1.204 9 0.812 9 0.812 9 0.860
64 32 8 14 0.515 9 0.344 8 0.313 8 0.344
64 16 16 16 0.672 9 0.391 9 0.390 8 0.391
64 16 8 15 0.281 9 0.187 8 0.156 7 0.156
32 32 32 12 0.782 10 0.687 10 0.672 12 0.891
32 32 16 11 0.375 10 0.360 9 0.312 10 0.375
32 32 8 10 0.141 8 0.125 8 0.125 10 0.156
32 16 16 12 0.235 8 0.156 8 0.156 8 0.172
32 16 8 12 0.109 8 0.094 8 0.063 7 0.078
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[24] and some multigrid methods are developed [25–27]. Most high-order compact finite difference schemes and multigrid
strategies are implemented on equal-meshsize-discretized grids [15,16,19–27]. So, developing high-order compact differ-
ence discretization schemes with unequal meshsizes and their specialized multigrid methods for these equations is mean-
ingful. On the other hand, recently, Wang and Zhang [28] developed a sixth-order finite difference strategy which is based on
Richardson extrapolation, an operator interpolation scheme and a multiscale multigrid method to solve 2D Poisson equation.
The strategy can also be generalized to 3D differential equations mentioned above with unequal meshsize discretization.
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